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A method based on modal strain energy is presented for locating damage in a
structure. This method makes use of the change of modal strain energy in each
structural element before and after the occurrence of damage. Some properties of
this Modal Strain Energy Change are given to illustrate its sensitivity in locating
the structural damage. Information required in the identification are the measured
mode shapes and elemental stiffness matrix only without knowledge of the
complete stiffness and mass matrices of the structure. Several damage cases in a
simulated structure are studied in which the effect of random error in terms of
measurement noise in the mode shapes and systematic error in terms of errors
from incomplete measurements are considered. This method is then applied to
detect damage in a single-bay two-storey portal steel frame structure. Results
illustrate that the MSEC is sensitive to damage, and the proposed method is simple
and robust in locating single or multiple damages in a structure.
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1. INTRODUCTION

Damages in the form of a loss of local stiffness in a structure would alter the system
physical properties such as the vibration parameters of the structure, i.e., the
modal frequencies, mode shapes and modal damping values. In such cases, the
change in the vibration parameters can be used as indictors for damage detection.
Techniques based on these changes for detecting damage in a structure have
attracted much attention in recent years, and many approaches have been
developed.

The majority of techniques used in the detection can be categorized into two
groups. One group makes use of Finite Element Model (FEM) refinement
algorithms. The damage detection problem is considered as a particular case of
the general model updating problem where the aim of FEM refinement is to seek
a refined model with its modal parameters in agreement with those obtained from
the exepriment.
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These problems have been studied for several decades. An early work on
Optimal Matrix Updates by Berman and Flannelly [1] presented the theory of
incomplete models of dynamic structures and discussed the problem of calculating
system matrices using incomplete test data. Several optimal matrix update
methods were later proposed. Baruch and Itzhack [2] used the measured
frequencies and mode shapes to modify a structural stiffness matrix based on the
minimal Frobenius norm matrix adjustment technique. Berman and Nagy [3]
adopted similar formulation to improve both the mass and stiffness matrices. Also
Caesar [4] has given a very comprehensive review on the optimal matrix update
approach.

Many strategies have been developed for locating the modelling errors in the
FEM. These methods are also used for damage detection. Sidhu and Ewins [5]
presented the Error Matrix Method in which changes in the stiffness and mass
matrices between the analytical and experimental models were constructed and the
modelling errors were located. Zhang and Lallement [6] proposed a complete
procedure to localize the dominant errors and correct the selected parameters by
a sensitivity method. Vibration control-based Eigenstructure Assignment
Technique [7, 8] is another kind of model correction method. Zimmerman and
Kaouk [9] applied this approach in a computationally attractive algorithm to
identify the damage location, and the extent of damage was determined using a
minimum rank updating theory [9, 10].

The other group of techniques to locate structural damage makes use of modal
parameters as damage indicators. Cawley and Adams [11] used the ratio of the
frequency changes in two modes as a damage indicator, which was proved to be
a function of the damage location only. Locations indicated by the theoretically
determined dvi /dvj ratio equal to the exeprimentally measured values were
possible damage sites. Lim and Kashangaki (1994) developed the best achievable
eigenvectors which were computed based on a candidate set of assumed damage
cases. The damage in the structure was located [12] by comparing the best
achievable eigenvectors with the measured modes. Pandey and Biswas [13] used
the change in flexibility matrix before and after the occurrence of damage in the
structure as an indicator to locate the structural damage. Lin [14] multiplied the
measured flexibility matrix by the undamaged analytical stiffness matrix. The
resulting matrix should be an identity matrix if there is no damage. Inspecting rows
and/or columns of the resulting matrix gives the location of the degrees of freedom
(DOF) that are connected to the structural damage.

In the present work, the ratio of change in the Modal Strain Energy is proposed
for detecting the damage location. This parameter is based on the estimation of
the change of modal strain energy in each element after the occurrence of damage.
Modal strain energy has been widely used to quantify the participation of each
element in particular vibrating mode and in the selection of a candidate set of
elements for damage localization [12]. Hearn and Testa [15] have illustrated that
the ratio of the elemental strain energy to the total kinetic energy of the whole
system is a fraction of the eigenvalue, and the ratio of this fraction for two different
modes is dependent only on the location of the damage.
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It will be demonstrated in the following sections that the proposed parameter
is robust in locating the structural damage. Several simulated damage cases in the
European Space Agency truss structure are used to examine the performance of
this indicator and to illustrate the damage detection algorithm, and the
experimental results of a single bay two-storey steel plane frame are studied. The
effects of measurement noise and the mode shape expansion errors are discussed.
Results indicate that the proposed method is effective and robust in locating single
or multiple damage locations in the structure.

2. THEORY

The equations of motion for a n-DOF dynamic system can be expressed as

KF=MFL, (1)

where K and M are the n× n system stiffness and mass matrices, F is the mode
shape matrix, and L is the diagonal frequency matrix.

In actual structures damage may often affect the stiffness matrix but not the
mass matrix of the system. In the theoretical development that follows, damage
is assumed to cause a loss of stiffness in one or more elements of the system. The
stiffness matrix, modal frequencies and mode shapes of the structure with damage
can be represented by

Kd =K+ s
L

j=1

DKj =K+ s
L

j=1

ajKj with (−1Q aj Q 0), (2a)

ld = l+Dl, (2b)

Fd
i =Fi +DFi =Fi + s

m

j=1

cijFj , (2c)

where the superscript d denotes the damaged case, and aj , and cij are coefficients
defining a fractional change of the stiffness matrix and the mode shape vector; m
is the number of modes considered and L is the total number of elements in the
system.

2.1.     

The Modal Strain Energy (MSE) of the jth element and the ith mode before
and after the occurrence of damage is defined as

MSEij =FT
i KjFi and MSEd

ij =FT
diKjFdi , (3)

where MSEij and MSEd
ij are respectively the undamaged and damaged MSE which

are functions of the jth undamaged element stiffness matrix and the ith mode
shape of the undamaged or damaged state. Since the location of damage is
unknown, the original stiffness matrix is used in the damaged state as an
approximation. A damage is assumed to cause a local stiffness reduction affecting
the mode shapes in a localized region. Equation (3) shows that with damage
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occurring in an element of a system, the MSE will change little in the undamaged
elements, but there will be a larger change in the damaged elements. Thus, the
Modal Strain Energy Change Ratio (MSECR) could be a meaningful indicator
for damage localization defined as

MSECRi
j =

=MSEd
ij −MSEij =
MSEij

, (4)

where j and i denote the element number and mode number, respectively. If the
MSE for several modes are considered together, the MSECRj of the jth element
is defined as the average of the summation of MSECRi

j for all the modes
normalized with respect to the largest value MSECRi

max of each mode.

MSECRj =
1
m

s
m

i=1

MSECRi
j

MSECRi
max

. (5)

2.2.     

The Modal Strain Energy Change Ratio described above can be obtained from
experiment, and this section gives some theoretical considerations of the damage
indicator.

For a small perturbation in the system described by equation (1)

[(K+DK)− (li +Dli )M](Fi +DFi )=0. (6)

Expanding equation (6) to include both the changes in the eigenvalue and the
eigenvector,

(K− liM)(Fi +DFi )+ (DK−DliM)(Fi +DFi )=0.

Neglecting higher order terms, and with (K− liM)Fi =0, equation (6) leads to

(K− liM)DFi +(DK−DliM)(Fi +DFi )=0.

Pre-multiplying FT
r with r$ i, to both sides of the equation and with FT

r MFi =0,
equation (6) leads to

FT
r DKFi +FT

r KDFi − liF
T
r MDFi =0. (7)

Since FT
r K= lrF

T
r M for an undamped system, equation (7) can further be

rewritten as

(lr − li )FT
r MDFi =−FT

r DKFi . (8)

Substituting equation (2c) on DFi into equation (8),

cir =
−FT

r DKFi

lr − li
. (9)

If r= i, the orthogonal relation FT
i MFi =1 exists. When DM=0, it can be shown

that crr =0. This result is the same as Morassi’s work [16] in considering the
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Figure 1. The damaged element p and the target element j.

sensitivity of mode shapes with a crack in a beam element with boundary springs.
Therefore, the change in the modal vector can be written as

DFi = s
m

r=1

−FT
r DKFi

lr − li
Fr , where r$ i. (10)

The MSEC after the occurrence of damage is then obtained for the jth element
in the ith mode from equation (3) as

MSECi
j =FT

diKjFdi −FT
i KjFi . (11)

Substituting equations (2c) and (10) into equation (11) and neglecting higher order
terms, the MSECi

j becomes

MSECi
j =2FT

i Kj0s
m

r=1

−FT
r DKFi

lr − li
Fr1, where r$ i. (12)

Suppose only one damage exists in the structure in member p, substituting
equation (2a) into equation (12) gives

MSECi
j =−2ap s

m

r=1

1
lr − li

FT
r KpFiF

T
i KjFr , where r$ i, (13)

where FT
r Kp and KjFr are two vectors with most of their elements zero except the

few elements associated with those DOFs of the elemental stiffness matrix Kp or
Kj .

Equation (13) exhibits the following properties: (1) If j= p, i.e., the selected jth
element in the FEM carries the damage. The non-zero elements of vectors FT

r Kp

and KjFr correspond to the same DOFs and the value of MSECp calculated is
much larger than those for the following cases. (2) If j$ p, and the selected jth
element of the FEM does not carry the damage. But the element is connected and
adjacent to the damaged element p as shown in Figure 1. The sequence of non-zero
elements in vector FT

r Kp does not match those of KjFr . But some non-zero

Figure 2. An eight-element cantilever beam model.
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T 1

Modal strain energy change in a simulated damaged cantilever beam

MSECl
j MSECj

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV from
Damage Element from from from from from five

cases no. 1st mode 2nd mode 3rd mode 4th mode 5th mode modes

1 1 1 1 1 0·304* 0·861†
2 −0·271 −0·335 −0·466 −0·191 1 0·453
3 −0·253 −0·388 −0·063 0·574 −0·855 0·427

Damage 4 −0·208 −0·161 0·150 −0·714 0·170 0·281
in element 5 −0·147 −0·090 −0·046 −0·319 −0·142 0·149

1 6 −0·084 −0·020 −0·294 0·212 −0·296 0·181
7 −0·033 −0·006 −0·243 −0·416 0·028 0·145
8 −0·004 0·0002 −0·038 −0·145 −0·208 0·079

1 −0·294 −0·557 −0·973 −1 1 0·765
2 1 1 1 −0·133* 0·980 0·823†
3 −0·244 −0·082 −0·056 0·208 −0·749 0·268

Damage 4 −0·202 −0·269 0·176 0·216 0·059 0·184
in element 5 −0·143 −0·050 0·092 0·003 −0·518 0·161

2 6 −0·082 −0·042 −0·099 0·129 −0·150 0·073
7 −0·032 0·002 −0·120 0·256 −0·355 0·153
8 −0·004 −0·001 −0·021 0·054 −0·267 0·069

1 −0·312 −0·830 −1 0·314 −0·471 0·585
2 −0·277 −0·106 −0·427 0·022 −0·412 0·249
3 1 1 0·241* 1 1 0·848†

Damage 4 −0·179 0·051 0·130 −0·564 0·144 0·214
in element 5 −0·127 −0·106 0·360 −0·159 −0·005 0·151

3 6 −0·073 −0·0002 0·419 −0·027 −0·240 0·152
7 −0·028 −0·010 0·242 −0·460 0·114 0·171
8 −0·003 0·001 0·033 −0·125 −0·129 0·058

* Incorrect identification.
† Correct identification.

elements in both vectors FT
r Kp and KjFr correspond to the same DOFs. So the

value of the MSECj calculated is smaller than that of MSECp but larger than that
for the following case. (3) If j$ p, i.e., the selected jth element in the FEM does
not carry the damage, and the element j is far away from the damaged element
p. The DOFs corresponds to the non-zero elements in vector FT

r Kp does not match
with those in vector KjFr . The value of MSECj calculated from equation (3) is
therefore very small.

A numerical example of a cantilever beam consisting of eight elements, as shown
in Figure 2, is used to illustrate these properties. A reduction of stiffness of 10%
is assumed to occur in elements 1, 2 and 3 in turn, and the Modal Strain Energy
Changes are calculated for the first five modes and the values are shown in Table
1. Ten analytical modes are included in the calculation in equation (13). The
Modal Strain Energy of each element has been normalized with respect to the
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largest value of the same group and the MSECj of an element is the average of
the absolute value of the Modal Strain Energy Change for all the modes.

The Modal Strain Energy Change has the largest value at the damaged element
and a smaller value at the adjacent-to-damage elements. The value is very small
at elements far away from the damaged elements. However, elements
corresponding to nodal points of the mode shape have exceptionally large and
small values, and this may sometimes give the wrong indication of the damage
location, e.g., incorrect identification of damage from the 5th mode for element
1; from the 4th mode for element 2; and from the 3rd mode for element 1. This
disadvantage of using one single mode can be overcome by using the Modal Strain
Energy Change for several modes as those values shown in Table 1 with an †
indicating clearly the damage location.

The Modal Strain Energy Change in higher modes do not contribute much in
the identification of the damage location. This can be explained by: (a) the size
of discretized element of the model is of the same order as the nodal point/line
density of the structure; and (b) the effect of truncation of analytical vibration
modes above the mth mode is smaller for the higher modes, as seen from equation
(13).

The above discussions give some evidence to support the intuitive belief that
measured mode shapes are not sensitive to local change in stiffness except when
the measurement is made in or close to the damage domain.

The Modal Strain Energy Change of a damage element is larger than that of
any other undamaged element. Elements that are linked with the damaged one
have a smaller Modal Strain Energy Change value. And if an element is far away
from the damage element, the Modal Strain Energy Change of this element will
be much smaller. Similar results can also be obtained when there are multiple
damages in the structure. The Modal Strain Energy Change values from the lower
modes give clear indication of the damage location and the use of combined
MSEC values from several modes is recommended.

3. EXAMPLES

To evaluate the performance and robustness of the Modal Strain Energy
Change Ratio in locating damage, two simulated problems are investigated.
first example makes use of the widely-used European Space Agency truss structure.
Several simulated damage cases are investigated. The purpose of the simulation
is to assess the effectiveness of this approach when the measured modes are
incomplete with or without noise. The second example studies the effect of
systematic error and random error on the proposed damage localization approach
in a two-storey steel plane frame structure.

3.1.   

The two-dimensional truss structure is shown in Figure 3. The finite element
model of the structure consists of 78 two-dimensional beam elements, 74 nodes
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and 222 DOFs. Each node has three DOFs with motion confined in the plane of
the structure. The numbers given in the figure are element numbers. The
geometrical and physical data of the structure used in the initial FEM are shown
in Figure 3.

Two damage cases are assumed: (a) Single damage in the 25th element in the
lower chord with the stiffness decreased by 15%; and (b) Multiple damages in the
25th element in the lower chord, in the 53rd element in the inclined member and
in the 70th element in the vertical member with their stiffnesses decreased by 15%.

The first five modes of vibration are measured in the following damage
localization procedure. The analytical mode shapes are taken as the undamaged
mode shapes. These mode shapes are contaminated with 5% random noise as the
‘‘measured’’ mode shapes. Figures 4 to 11 shown the damage localization results
for each case. The following symbols in the legend are used in the figures: n denotes
complete measured modes with noise; c denotes complete measured modes without
noise; i denoted incomplete measured modes without noise; and n− i denotes
incomplete measured modes with noise.

Figures 4 to 7 show the results of damage location by using equation (4) or (5)
with complete ‘‘measured’’ vibration modes. The x-axis gives the element number
and the y-axis is the value of Modal Strain Energy Change Ratio for each element.
Figures 4 and 6 show the damage location results detected by using only one
mode. The results from using five modes with and without noise are compared in
Figures 5 and 7. It is seen that both cases of a single damage and multiple damages
can be identified by using a single mode or multiple modes. The value of MSECR
for the damaged element is decreased by 20% due to the presence of measurement
noise. However this effect is smaller when multiple modes are used.

Figures 8 and 9 show that the damages can also be located when the ‘‘measured’’
vibration modes are incomplete. Only 78 translational DOFs are ‘‘measured’’
which is about 35% of the total DOFs of the FEM of the structure. They are so
selected such that information collected is relatively uniform from all parts of the
structure, and information from the rotational DOFs are not considered. The
measured points are shown in Figure 3 as black dots. The incomplete ‘‘measured’’
modes are expanded by using a new modal expansion method described in Shi

Figure 3. The European Space Agency structure and the measurement points. W, Measured point
(x- and y-direction) in the incomplete ‘‘measurement’’. Finite Element Model: E=0·75×1011 Pa,
I=0·0756 m4, r=2800 kg/m3; vertical elements: A=0·6×10−2 m2; diagonal elements:
A=0·3×10−2 m2; horizontal elements: A=0·4×10−2 m2.
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Figure 12. Finite element model of the two-story frame structure. E=2·1×1011 N m−2,
r=7800 kg/m3.

et al. [17] to the full dimension of the FEM. The expanded modes are then used
in the damage localization. Figure 8 gives the result of multiple damages
identification using only the second mode without noise. The multiple damages
located using five modes are shown in Figure 9. It is seen that the incompleteness
of the ‘‘measured’’ mode greatly affects the damage identification result. The value
of MSECR is reduced by about 45% compared with those computed from
complete modes.

The results of multiple damages detected from incomplete and noisy modes are
shown in Figures 10 and 11. The combined effect of incompleteness and
measurement noise reduces the MSECR value by about 50% when compared with
values obtained from the complete mode.
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T 2

MAC—with damage at node 4 of the frame structure

Mode: Undamaged 1 2 3 4 5 6
damaged Frequency (Hz) 22·49 74·17 198·51 221·77 261·32 280·17

1 19·33 0·9982 0·0176 0·0001 0·0001 0·0114 0·0085
2 73·75 0·0074 0·9987 0·0007 0·0003 0·0267 0·0013
3 195·25 0·0000 0·0002 0·9700 0·0588 0·0166 0·0017
4 221·02 0·0001 0·0000 0·0077 0·9759 0·0128 0·1115
5 241·26 0·0235 0·0330 0·0118 0·0040 0·9397 0·0054
6 275·87 0·0043 0·0069 0·0069 0·1043 0·0012 0·9870

T 3

MAC—with damage at node 7 of the frame structure

Mode: Undamaged 1 2 3 4 5 6
damaged Frequency (Hz) 22·49 74·17 198·51 221·77 261·32 280·17

1 21·83 0·9979 0·0295 0·0019 0·0023 0·0325 0·0034
2 67·50 0·0053 0·9834 0·0047 0·0019 0·0340 0·0002
3 193·30 0·0004 0·0022 0·9535 0·0002 0·0377 0·0006
4 219·83 0·0001 0·0015 0·0689 0·9173 0·0221 0·0103
5 247·09 0·0145 0·0131 0·0116 0·0598 0·8359 0·1291
6 278·24 0·0000 0·0001 0·0006 0·0017 0·1021 0·7513

l0

T 4

MAC—with damages at nodes 7 and 11 of the frame structure

Mode: Undamaged 1 2 3 4 5 6
damaged Frequency (Hz) 22·49 74·17 198·51 221·77 261·32 280·17

1 18·67 0·9946 0·0373 0·0006 0·0082 0·0206 0·0011
2 67·10 0·0024 0·9796 0·0030 0·0106 0·0032 0·0002
3 191·99 0·0007 0·0032 0·9788 0·0018 0·0115 0·0049
4 217·08 0·0001 0·0001 0·0513 0·7016 0·1336 0·0702
5 235·02 0·0203 0·0153 0·0001 0·2766 0·6690 0·0910
6 273·42 0·0050 0·0017 0·0126 0·0019 0·1182 0·5678

Results suggest that the Modal Strain Energy Change Ratio can effectively be
used to locate the structural damage in a single element and in multiple elements
with incomplete and noisy ‘‘measured’’ modes.

3.2.   

A two-storey steel plane frame structure (2·82 m high and 1·41 m wide), shown
in Figure 12, is used in the experimental damage localization in the laboratory.
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The sturcture is modelled by 18 two-dimensional beam elements of equal length.
The beams are connected to the column horizontally by top- and seat-angles and
double web-angles with bolts and nuts. Details of this type of beam–column
connection are also shown in Figure 12. The initial rotational stiffness of this kind
of beam–column connection is approximately 3·0×106 Nm/rad from static tests
[18]. Details of the geometrical and physical information and the FEM of the
structure are shown in Figure 12. The bottom of the columns are fully welded to
base plates which are welded to the rigid floor, and the same rotational stiffness
as for the beam–column connection is assumed for these supports in the finite
element modelling.

Three damage cases on the frame structure are studied: (1) damage at node 4;
(2) damage at node 7; and (3) damages at nodes 7 and 11.

Figure 13. Mode shapes of the frame structure.
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Figure 14. Damage at node 4 (element 13) (the first mode).

Figure 15. Damage at node 4 (element 13) (the second mode).

Figure 16. Damage at node 4 (element 13) (two modes).

The damage is simulated by removing both the top- and seat-angles at the joint.
This release of restraints to the joints will affect only the stiffness of the horizontal
member but not the vertical member. Nine modal frequencies and mode shapes
of the frame before and after the ‘‘damage’’ is introduced are measured [19] and
determined using the Structural Modal Analysis Package [20]. The modal
frequencies are shown in Table 2 to 4 and the theoretical mode shapes are shown
in Figure 13. Only the horizontal translational DOFs at nodes 2 to 7 and 9 to 14,
and the vertical translational DOFs at nodes 15 to 18 are measured. The
incomplete mode shapes are then expanded with the modal expansion method [17].
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The accuracy of the FEM of the structure is checked by the Modal Assurance
Criteria (MAC) [21] between the analytical mode shapes and the measured mode
shapes. The MAC values are larger than 0·98 for the first two modes, as seen in
Table 2 to 4. Therefore, the FEM is considered accurate enough to represent the
structure for illustration of this method, and it is directly used as a reference model
without any system updating. The first two modes are used in the damage
localization procedure.

Figure 17. Damage at node 7 (element 16) (the first mode).

Figure 18. Damage at node 7 (element 16) (the second mode).

Figure 19. Damage at node 7 (element 16) (two modes).
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Figure 20. Damages at nodes 7 and 11 (elements 15 and 16) (the first mode).

Figure 21. Damages at nodes 7 and 11 (elements 15 and 16) (the second mode).

Figure 22. Damages at nodes 7 and 11 (elements 15 and 16) (two modes).

The damage location is successfully detected by using equation (4) or (5). The
results are shown in Figures 14 to 22. Figures 14 to 16 show damage exists in
element 13 which has one end connected to the column at node 4 by using only
the first mode, the second mode and the first two modes, respectively. Damage
at node 7 is identified as damage in element 16 with one end connected to the
column at node 7, and the results are shown in Figures 17 to 19. Multiple damages
at nodes 7 and 11 are located as damages in elements 15 and 16 with one end
connected to the column at nodes 11 and 7, respectively, and the results are shown
in Figures 20 to 22. The normalized MSECR in the damaged element is 1·0, and
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the values of other elements are less than 0·48 when there is a single damage in
the structure. Figures 20 to 22 show that the damage at node 7 is much easier to
locate than damage at node 11. The normalized MSECR in the elements 16 and
15 are 1·0 and close to 0·7, respectively. The values of the other elements are less
than 0·45 when two damages exist in the structure.

4. CONCLUSIONS

A damage localization method using Modal Strain Energy Change has been
presented. The computation of this change involves only the elemental stiffness
matrix and the analytical mode shpaes of the structure, and it is sensitive to the
existence of damage. No other a priori information about the structure is required.
A localization procedure is illustrated by several simulated damage cases in the
European Space Agency truss structure and by the experimental damage
localization studies in a two-dimensional frame structure using complete and
incomplete measurements. Results indicate that this method is effective and robust
to locate single or multiple damages in the structure. Measurement noise and
incompleteness of measured modes greatly affect the damage location result.
However, good results can still be obtained using results from more than one
measured mode.
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